Shape and topology optimization of structures built by additive manufacturing

Grégoire ALLAIRE, M. Bihr, B. Bogosel, M. Boissier, C. Dapogny, F. Feppon, A. Ferrer, P. Geoffroy-Donders, M. Godoy, L. Jakabcin, O. Pantz

CMAP, École Polytechnique

CMM, Santiago de Chile, December 1-22, 2022

Outline of the course

- 1 Introduction: a review of additive manufacturing
- 2 Parametric optimization and the adjoint method
- 3 Geometric optimization and Hadamard method
- 4 Topology optimization and the level set method
- 5 Typical constraints from additive manufacturing
- 6 Optimization of lattice materials
- 7 Coupled shape and laser path optimization

A "hot" topic with a lot of room for new ideas and modeling...

Outline of the fourth chapter

Chapter 4 - Topology optimization and the level set method

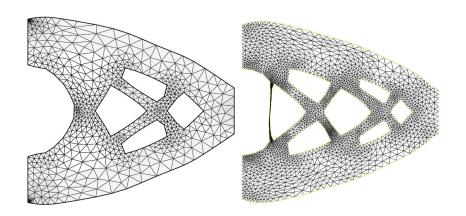
- I Introduction and motivation
- II Level set method
- III Application to topology optimization
- IV Numerical algorithm and results
- G. Allaire, C. Dapogny, F. Jouve, *Shape and topology optimization*, in Geometric partial differential equations, part II, A. Bonito and R. Nochetto eds., pp.1-132, Handbook of Numerical Analysis, vol. 22, Elsevier (2021).

I - Introduction and motivation

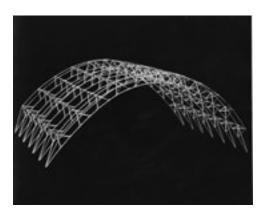
- Geometric optimization cannot change the topology.
- Many local minimizers are due to topological constraints.
- Sometimes, geometric optimization want to change the topology but it cannot in practice.
- This issue is both theoretical and numerical.

Topology optimization is required!

Different optimal shapes with different topologies



The art of structure is where to put the holes



Robert Le Ricolais, architect and engineer, 1894-1977

Airbus A380 wing

Airbus A380 wing

Topology optimization methods

- Homogenization method (the oldest one).
- SIMP, Solid Isotropic Material with Penalization (the most popular one).
- Topological gradient or asymptotics.
- Phase field method.
- Level set method.

We focus exclusively on the last one.

II - I evel set method

The level set method was introduced by Osher and Sethian (JCP 1988).

Applications in structural optimization:

- Early works: Sethian and Wiegmann (JCP 2000), Osher and Santosa (JCP 2001).
- A.-Jouve-Toader (CRAS 2002, JCP 2004), M. Wang et al. (CMAME 2003).
- Similar works with a phase field model: Bourdin and Chambolle (COCV 2003).
- Many, many works since then !

More general problem: how to move a surface x(t) according to a given velocity $\vec{v}(t,x)$.

Lagrangian approach: let us solve o.d.e.'s

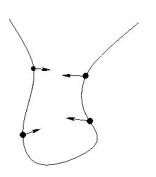
$$\begin{cases} \frac{dx}{dt} = \vec{v}(t, x(t)) \\ x(0) = x_0 \end{cases}$$

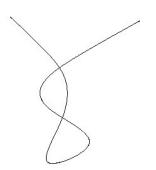
Surface evolution:

$$\Gamma(0) = \{x_0\} \quad \Rightarrow \quad \Gamma(t) = \{x(t)\}$$

- Reversible method: to go back in time, change the velocity sign!
- Shape tracking method.

Issue with Lagrangian methods





- Problems with self-intersection and singularity!
- How to handle a velocity \vec{v} which depends on the surface through its normal, mean curvature, etc. ?
- How to devise an Eulerian approach?
- It is necessary to make the evolution irreversible.

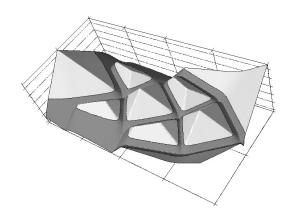
Shape capturing method on a fixed mesh of a "large" box D.

A shape Ω is parametrized by a level set function

$$\begin{cases} \psi(x) = 0 & \Leftrightarrow x \in \partial\Omega \cap D \\ \psi(x) < 0 & \Leftrightarrow x \in \Omega \\ \psi(x) > 0 & \Leftrightarrow x \in (D \setminus \Omega) \end{cases}$$

The normal n to Ω is given by $\nabla \psi/|\nabla \psi|$ and the mean curvature H is the divergence of n. These formulas make sense everywhere in D on not only on the boundary $\partial \Omega$.

Example of a level set function



Hamilton Jacobi equation

Assume that a shape $\Omega(t)$ evolves with a (scalar) normal velocity V(t,x). Then

$$\psi\Big(t,x(t)\Big)=0 \quad ext{ for any } x(t)\in\partial\Omega(t).$$

Deriving in t yields

$$\frac{\partial \psi}{\partial t} + \dot{x}(t) \cdot \nabla_{x} \psi = \frac{\partial \psi}{\partial t} + V n \cdot \nabla_{x} \psi = 0.$$

(The same is true for any level set $\psi(t,x(t))=C$.) Since $n=\nabla_x\psi/|\nabla_x\psi|$ we obtain

$$\frac{\partial \psi}{\partial t} + V |\nabla_x \psi| = 0.$$

This Hamilton Jacobi equation is posed in the whole box D, and not only on the boundary $\partial\Omega$, if the velocity V is known everywhere.

Invariance with respect to extension outside Γ

The only meaningful information is the level set $\psi(t)=0$. It should not depend on the choice of extended initial data ψ_0 such that $\Gamma(0)=\{\psi_0=0\}$.

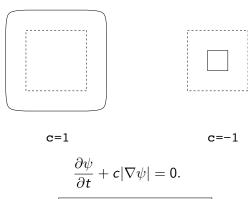
Lemma. Let $z \to h(z)$ be an increasing function such that h(0) = 0. If ψ is a H-J solution for the initial data ψ_0 , then $h(\psi)$ is a solution for $h(\psi_0)$ too.

Formal proof. Multiply the H-J equation by $h'(\psi) \ge 0$ which can be put inside the absolute values.

Consequence: the level set $h(\psi)(t) = 0$ is the same whatever the choice of the function h.

Cf. works of Barles, Chen-Giga-Goto, Evans-Spruck.

Example of an explicit solution



A viscosity solution is $\psi(t,x) = d(x,\Gamma_0) - ct$ with $d(x,\Gamma_0)$ the signed distance to the initial surface. Irreversible solution!

Conclusion: some corners remain corners, others get rounded! Numerical schemes must preserve this property (upwinding).

III - Application to topology optimization

Idea of the method: combine the level set algorithm with the shape derivative of Hadamard.

Recall that a shape derivative is

$$J'(\Omega)(\theta) = \int_{\partial\Omega} j(u,p)\,\theta\cdot n\,ds.$$

Gradient algorithm: choose θ such that $J'(\Omega)(\theta) < 0$ and move the shape

$$\Omega_t = (\mathrm{Id} + t\theta)\Omega$$
 with $\theta = -j(u, p) n$

for some descent step t > 0.

Clearly, θ is a normal speed and the descent step is like a pseudo-time.

Instead of moving the mesh of $\Omega,$ we advect the level set function ψ of Ω

$$\frac{\partial \psi}{\partial t} - j |\nabla_x \psi| = 0 \quad \text{in } D$$

where the "pseudo-time" t is the descent step.

- It requires to embed Ω in a "large" box D.
- The advection velocity V = -j is given by a shape derivative.
- This advection velocity must be extended to the whole D from its knowledge on $\partial\Omega$.
- The whole box D must be meshed and not only the shape Ω .

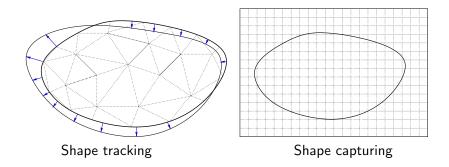
Shape capturing algorithm: the mesh of D is fixed and Ω (which is varying during optimization) is never meshed explicitly.

The state u and the adjoint p are computed in D and not Ω . The void region $D \setminus \Omega$ is filled with a weak ersatz material.

$$\begin{cases} -\operatorname{div}(A^* e(u)) = 0 & \text{in } D \\ u = 0 & \text{on } \Gamma_D \\ (A^* e(u)) n = g & \text{on } \Gamma_N \\ (A^* e(u)) n = 0 & \text{on } \partial D \setminus (\Gamma_N \cup \Gamma_D). \end{cases}$$

with an elasticity tensor A^* defined as A inside Ω and εA inside $D \setminus \Omega$ with $\varepsilon \approx 10^{-4}$.

Tracking versus shape capturing



Solving the Hamilton-Jacobi equation

Two algorithms:

- On a cartesian mesh use an explicit upwind finite difference scheme of order 2: Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press (1999).
- On an unstructured mesh use the methods of characteristics: Bui, Dapogny, Frey, International Journal for Numerical Methods in Fluids 70 (7), 899-922 (2012).

We have to solve the Hamilton-Jacobi equation

$$\frac{\partial \psi}{\partial t} + V |\nabla_x \psi| = 0 \quad \text{in } D$$

with a normal velocity V that decreases the objective function.

$$J'(\Omega)(\theta) = \int_{\Gamma} j \, \theta \cdot n \, ds$$

Is the choice $V = \theta \cdot n = -j$ the only one ?

No!

We can extend and regularize j to obtain another V which is still a descent direction, meaning that for $\theta = V n$

$$J'(\Omega)(\theta) \leq 0$$

$$J'(\Omega)(\theta) = \int_{\Gamma} j\,\theta \cdot n\,ds$$

We extend and regularize -j by solving

$$\left\{ \begin{array}{ll} -\Delta V = -j\delta_{\Gamma} & \text{in } D \\ V = 0 & \text{on } \Gamma_{D} \cup \Gamma_{N} \\ \frac{\partial V}{\partial n} = 0 & \text{on } \partial D \setminus (\Gamma_{D} \cup \Gamma_{N}) \end{array} \right.$$

where δ_{Γ} is the Dirac mass carried by Γ . The variational formulation is

$$\int_{D} \nabla V \cdot \nabla \varphi \, dx = -\int_{\Gamma} j \, \varphi \, ds \qquad \forall \, \varphi$$

The velocity V is smoother than -j and it is a descent direction because for $\theta = V n$

$$J'(\Omega)(\theta) = \int_{\Gamma} j V ds = -\int_{D} |\nabla V|^2 dx \le 0$$

IV - Numerical algorithm and results

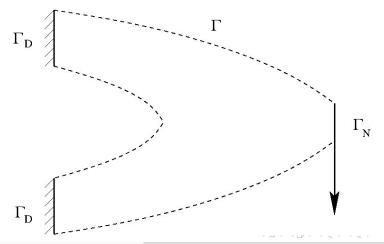
- **1** Initialization of the level set function ψ_0 (including holes).
- ② Iteration until convergence for $k \ge 1$:
 - Computation of u_k and p_k by solving **linearized elasticity problem** with the shape ψ_k . Evaluation of the shape gradient = normal velocity V_k
 - **2** Transport of the shape by V_k (Hamilton Jacobi equation) to obtain a new shape ψ_{k+1} .

Algorithmic issues

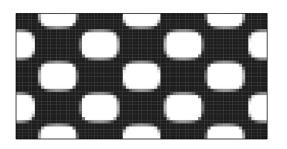
- Elasticity tensor A^* defined as a "mixture" of A and a weak ersatz material mimicking holes: $A^* = \rho A$ with $10^{-3} \le \rho \le 1$ and $\rho =$ volume of the shape $\psi < 0$ in each cell.
- At each elasticity analysis, we perform many time steps of transport (its number is controlled by the decrease of the objective function).
- \bullet Occasionally, re-initialization of the level set function ψ as the signed distance to the interface.

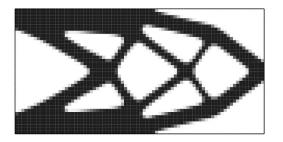
Cantilever example

Boundary conditions for an elastic cantilever: Γ_D is the left vertical side, Γ_N is the right vertical side, and Γ (dashed line) is the remaining boundary.

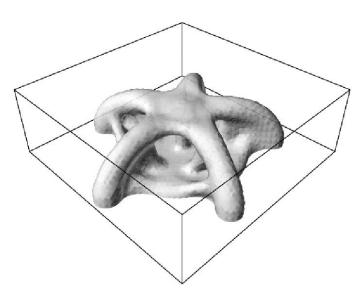


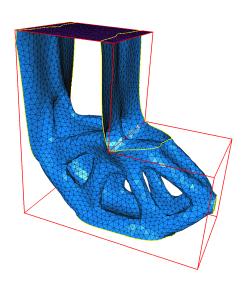
Optimal cantilever





Optimal dome





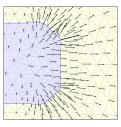
Variant of the level set method with remeshing

 Body-fitted mesh at each iteration thanks to the free software Mmg3d:

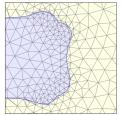
```
https://www.mmgtools.org/
```

- After moving the level set function ψ , the mesh is adapted to fit the zero level set.
- Much more precise numerical simulations, especially for multi-physics applications.
- G. Allaire, Ch. Dapogny, P. Frey, *Shape optimization with a level set based mesh evolution method*, CMAME 282, 22-53 (2014).

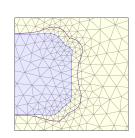
Exact remeshing with Mmg



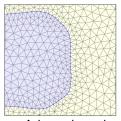
Initial interface



Cut mesh (bad quality)



Zero-level set after advection



Adapted mesh