


Cristina González Haro

Institut de Ciències del Mar (ICM) - Barcelona Expert Center (BEC)

Consejo Superior Investigaciones Científicas (CSIC)

□ cgharo@icm.csic.es

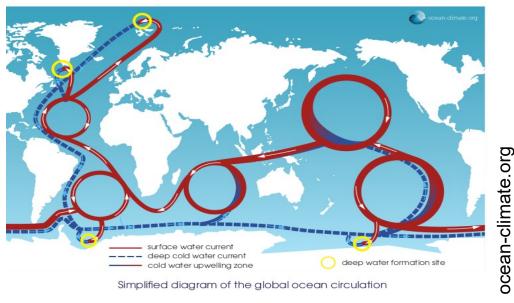
Copernicus Satellite Data in Chile and Latin America: From applications to networking



22nd March, Valparaíso, Chile



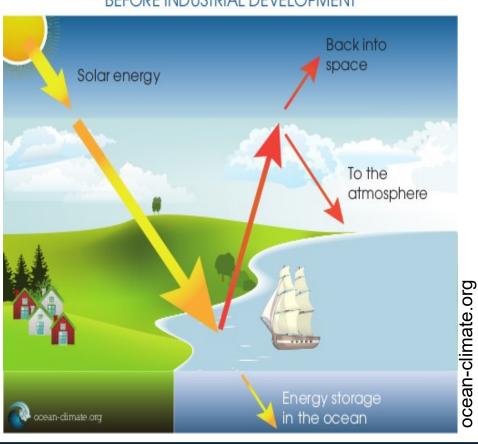



The **ocean** ocean plays a **key role** for the **global climate**:

- stores and distributes large amount of heat around the globe via ocean currents
- strong heat capacity (1200 times than atmosphere)
- vertical fluxes of CO<sub>2</sub>
- the upper ocean modifies the evolution of troposphere



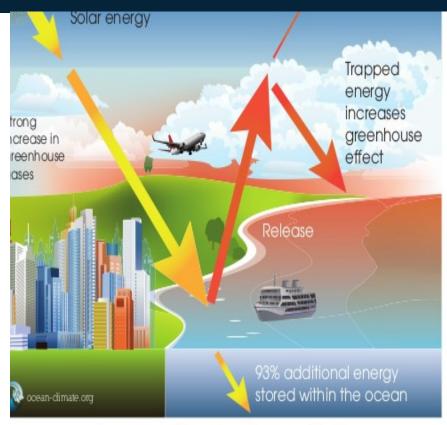



Ocean currents redistribute the absorbed solar energy. Ocean circulation is controlled by surface winds, by the rotation of the earth and by certain physical properties such as temperature and salinity.



3 / 46




#### BEFORE INDUSTRIAL DEVELOPMENT

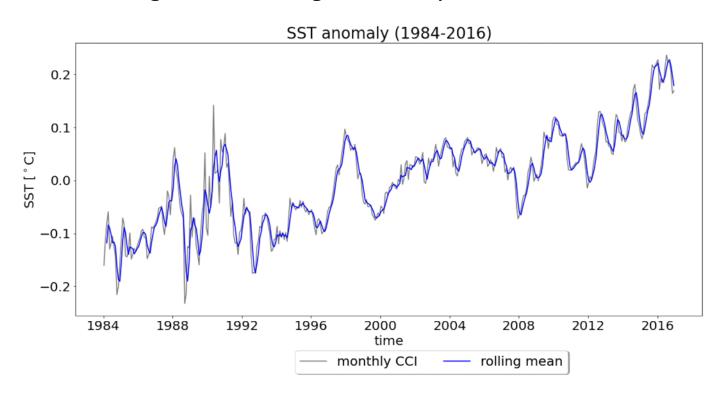


- 93% of the excess heat generated by human activities via the greenhouse effect is absorbed by the ocean, thus mitigating the increase in temperature of the atmosphere.
- The global ocean plays a role in the regulation and control of the large natural planetary balances. It regulates climate fluctuations, that would be much more rapid and more powerful if they were only governed by the atmosphere.

4 / 46

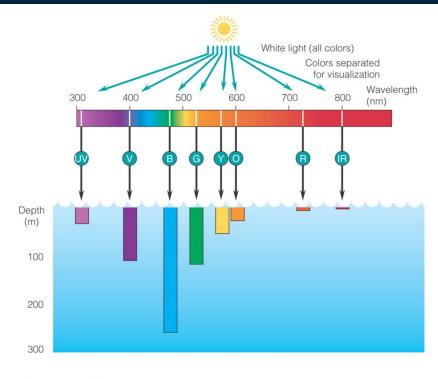





Increase of the greenhouse effect

- 93% of the excess heat generated by human activities via the greenhouse effect is absorbed by the ocean, thus mitigating the increase in temperature of the atmosphere.
- The global ocean plays a role in the regulation and control of the large natural planetary balances. It regulates climate fluctuations, that would be much more rapid and more powerful if they were only governed by the atmosphere.

ocean-climate.org

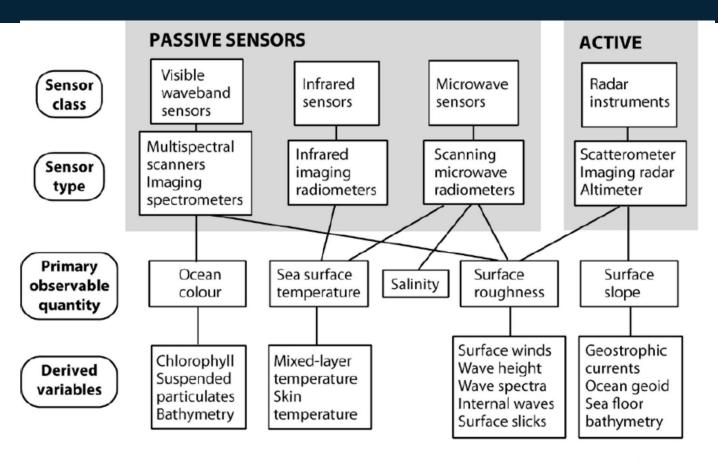



• Impact of ocean global warming as seen by satellites



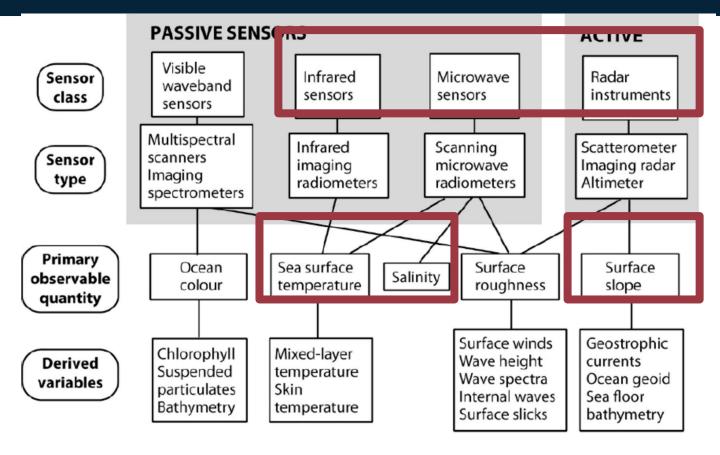



- Electromagnetic (EM) radiation attenuates very fast in the ocean:
  - 80 % of the solar energy is labored in the upper 10 m
  - o very little, if any, penetrates below 600m
- Only surface processes can be observed by satellites
  - deep processes with a surface signature
  - o acoustic remote sensing



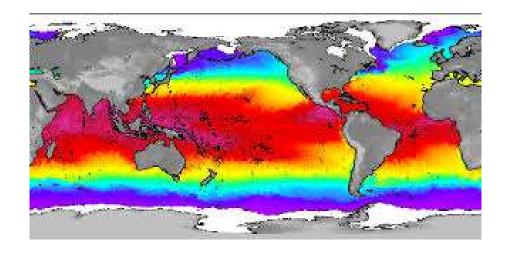

© 2005 Brooks/Cole - Thomson

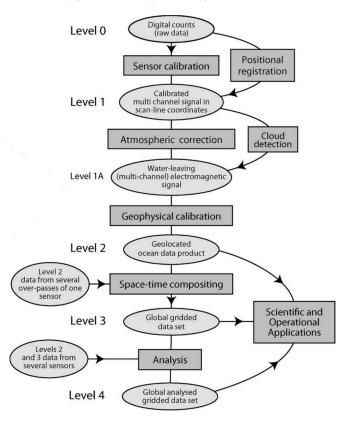




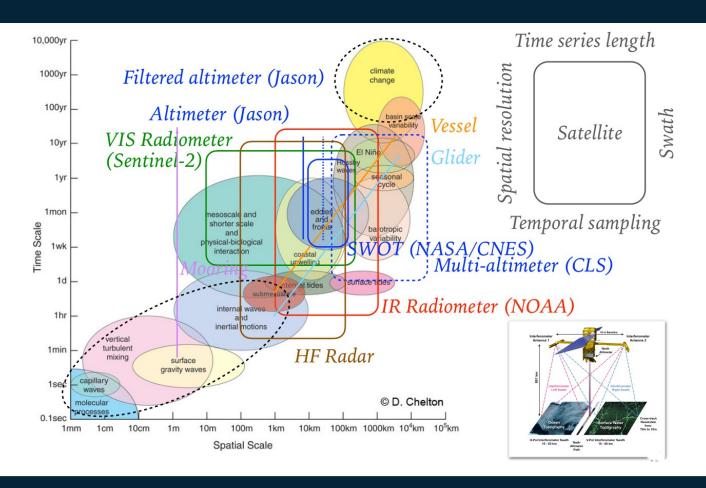






9 / 46





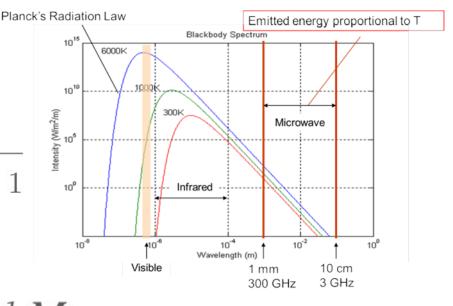


10 / 46



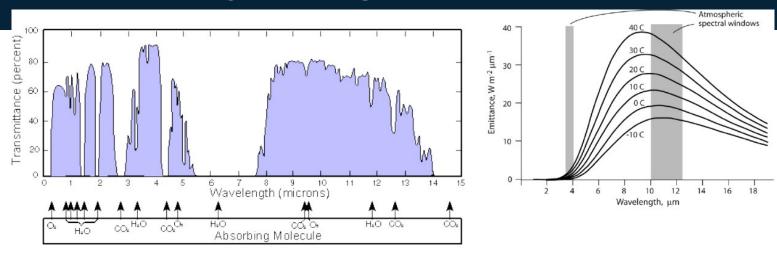






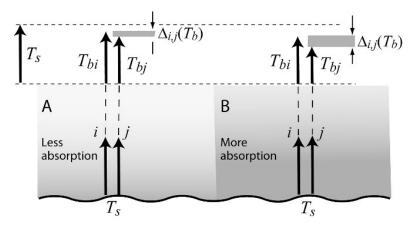






 Any body in thermodynamic equilibrium at temperature T radiates energy (Planck's law):

$$M_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{k_B\lambda T}\right) - 1}$$

• Radiance measurements allow to estimate the apparent temperature (Brightness Temperature)  $L_{\lambda}=\pi^{-1}\,M_{\lambda}$ 








- Transmittance in the IR band (3-14 μm) is not perfect:
  - Only discrete bands are available: 3-4 μm and 9-14 μm
  - Main contribution from H<sub>2</sub>O (inhomogeneous), CO<sub>2</sub> and O<sub>3</sub> (homogeneous)
- Atmospheric attenuation reduces Brightness Temperature





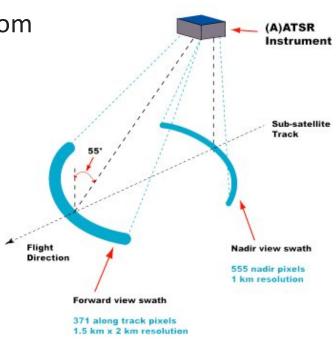
- Attenuation depends on the wavelength
- Use of a multichannel approach to correct for the atmospheric contribution

$$T_s = aT_B(\lambda_1) + b(T_B(\lambda_2) - T_B(\lambda_1)) + c$$

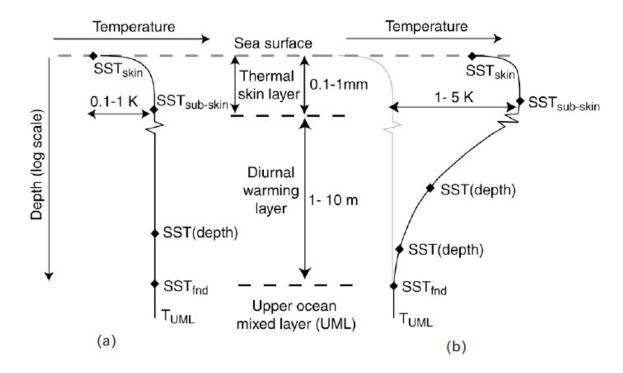
This is the most extended approach



 Alternative approach: observe the ocean from different angles (different atmospheric thickness)


$$T_{ni} \approx T_s - K \sec \theta_n$$
  
 $T_{fi} \approx T_s - K \sec \theta_f$ 

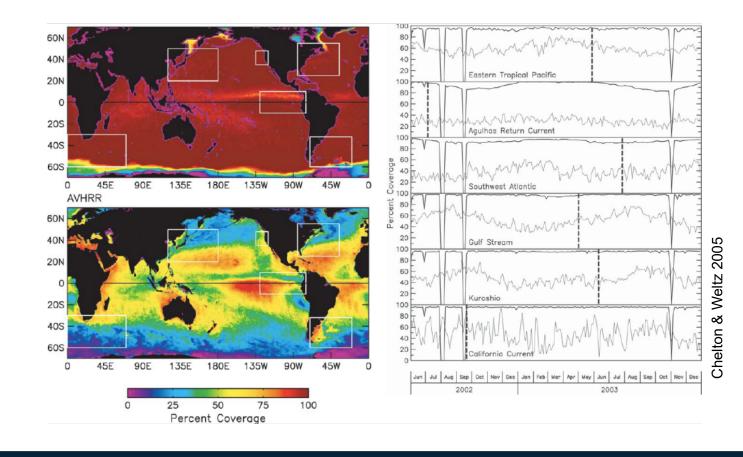
then,


$$T_s = \frac{T_{ni} \sec \theta_n f - T_{fi} \sec \theta_n}{\sec \theta_f \sec \theta_n}$$

• A wise choice of angles ( $\theta_n = 0^\circ$ ,  $\theta_f = 60^\circ$ ) simplifies to:

$$T_s = 2T_{ni} - T_{fi}$$










| Sensor acronym           | Platform(s)                         | Full name of sensor                                        | Agency                | Dates<br>(for series)                               | Main IR<br>spectral bands<br>(µm)                          |
|--------------------------|-------------------------------------|------------------------------------------------------------|-----------------------|-----------------------------------------------------|------------------------------------------------------------|
| AVHRR/2                  | NOAA-7, -9, -11, -12,<br>-14        | Advanced very high-<br>resolution<br>radiometer, version 2 | NASA/NOAA             | June 1981- Mar 2001                                 | 0.725-1.10 3.55-3.93<br>10.3-11.3 11.5-12.5                |
| AVHRR/3                  | NOAA-15, -16, -17,<br>-18,<br>METOP | Advanced very high-<br>resolution<br>radiometer, version 3 | NASA/NOAA<br>Eumetsat | May 1998- present                                   | 0.725-1.10 1.58-1.64<br>3.55-3.93 10.3-11.3<br>11.5-12.5   |
| ATSR-1, ATSR-2,<br>AATSR | ERS-1, ERS-2,<br>Envisat            | (Advanced) Along-<br>track scanning<br>radiometer          | ESA                   | Jul 1991- 2000<br>Apr 1995 - 2011<br>Sep 2001- 2012 | 1.45-1.75 3.55-3.85<br>10.3-11.3 11.5-12.5                 |
| MODIS                    | TERRA, AQUA                         | Moderate resolution imaging spectrometer                   | NASA                  | Feb 2000- present                                   | 3.660-3.840<br>3.929-3.989<br>4.020-4.080                  |
| SEVIRI                   | Meteosat second generation          | Spinning enhanced visible and infrared imager              | Eumetsat              | Sep 2002- present                                   | 1.50-1.78 3.48-4.36<br>8.30-9.10 9.80-11.80<br>11.00-13.00 |
| VIIRS                    | SUOMI NPP                           | Visible Infrared<br>Imaging Radiometer<br>Suite            | NASA                  | Feb 2011- present                                   | 3.660-3.840<br>3.973-4.128<br>10.263-11.263                |
| SLSTR                    | Sentinel-3a<br>Sentinel-3b          | Surface Land & Sea<br>Thermal Radimeter                    | ESA                   | Feb 2016- present,<br>April 2018-Present            | 1.45-1.75 3.55-3.85<br>10.3-11.3 11.5-12.5                 |

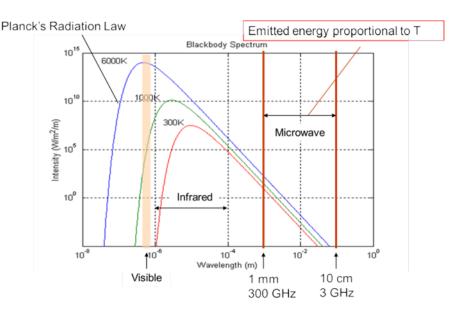






 Spectral emittance at frequency f emitted by body in thermodynamic equilibrium at temperature T (Planck's law):

$$\hat{B}_f(T) = \frac{2hf^3}{c^2} \frac{1}{\exp\left(\frac{hf}{k_BT}\right) - 1}$$


At microwave range:

$$\exp\left(\frac{hf}{k_BT}\right) \approx 1 + \frac{hf}{k_BT}$$

• Rayleigh-Jeans approximation:

$$\hat{B}_f(T) \approx \frac{2k_B f^2 T}{c^2}$$

The **emitted radiance** is **directly proportional** to the **temperature** of the emitting surface.

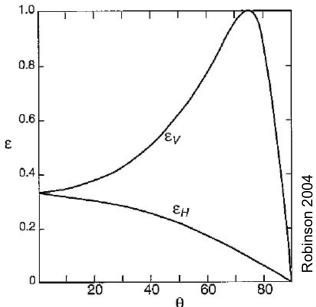




 Seawater is not a black-body and Planck's law has to be corrected introducing the emissivity ε.

$$B_f(T) = \varepsilon \hat{B}_f(T) \approx \varepsilon \frac{2k_B f^2 T}{c^2}$$

- The temperature retrieved without taking into account  $\epsilon$  is known as Brightness Temperature  $T_B$
- It is necessary to know the emissivity to retrieve the temperature of the emitter
  - $\rightarrow$  For infrared radiometry it was not necessary because  $\epsilon \sim 1$
  - $\rightarrow$  For microwave radiometry  $\epsilon$  < 1




• Emissivity depends on the viewing angle  $\theta$ , the polarization H, V and the dielectric constant for sea water e(f)

$$\varepsilon_{H,V} = 1 - \rho_{H,V}^2$$

$$\rho_H = \frac{\cos \theta - \sqrt{e - \sin^2 \theta}}{\cos \theta + \sqrt{e - \sin^2 \theta}}$$

$$\rho_V = \frac{e\cos\theta - \sqrt{e - \sin^2\theta}}{e\cos\theta + \sqrt{e - \sin^2\theta}}$$





- The roughness of the sea surface creates fluctuations in the incidence angle within the footprint of the radiometer.
  - → Resulting brightness depends on the sea surface slope statistics
  - ☐ Since this is controlled by wind stress, it contains information about winds.
  - $\rightarrow$  An effective emissivity  $\epsilon^*$  can be introduced to take roughness into account
- The presence of foam also modifies the emissivity
  - → The presence of foam also depends on





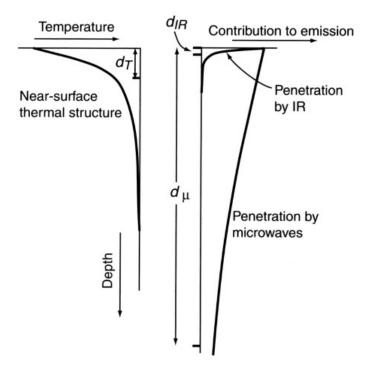
The emissivity not only depends on the viewing angle but also with e

$$e(f) = e_{\infty} + \frac{e_s - e_{\infty}}{1 + i2\pi f \tau_r} - i\frac{\sigma}{2\pi f \varepsilon_0}$$

valid for f < 85GHz.

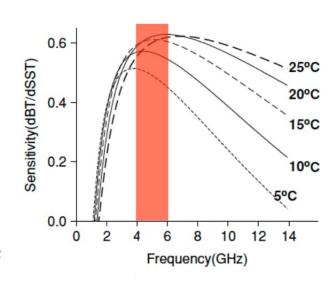
- $\rightarrow$   $\epsilon_0$  is the permittivity of free space
- $\rightarrow$  e<sub>\infty</sub> is the dielectric constant at very high frequency
- $\rightarrow$  e<sub>s</sub> is are the dielectric constant at zero frequency
- $\rightarrow$   $\tau_r$  is the relaxation time
- $\rightarrow$   $\sigma$  is the ionic conductivity

Depend on T and S


• The consequent dependence of  $\epsilon$  on T implies that the relation between microwave brightness and T is not linear.



• The penetration depth in the microwave range is given by


$$d(f) = \frac{2\pi f \sqrt{e}}{c}$$

- It depends on T and S
- Penetration depth for IR ( $\lambda = 12\mu m$ )  $d_{IR} \square 4\mu m$
- Penetration depth for MW (f = 5GHz)
   d<sub>MW</sub> □ 5mm
- Thickness of the skin-layer
   d<sub>T</sub> □ 100µm

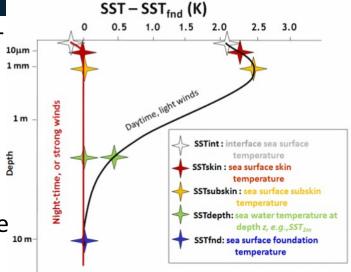




- The sensitivity of microwave radiance to SST/SSS is necessary to set the mounted channel at the most sensitive frequency
- Maximum sensitivity within the range 4–10 GHz
- The higher frequency channels of microwave radiometers (10 GHz) are less sensitive to SST change in the low SST range



BEC


Barcelona Expert Center

 SSTint: hypothetical temperature at the exact airsea interface

SSTskin: temperature within the conductive diffusion-dominated sub- layer □ 10 − 20µm
 Measured by an IR radiometer

• SSTsubskin: temperature at the base of the conductive laminar sub-layer of the ocean surface

 Well approximated to the measurement by a MW radiometer (6-11 GHz)



https://www.ghrsst.org/

- SSTdepth: temperature measurements beneath the SSTsubskin
  - Wide variety of platforms and sensors and distinct from those obtained using remote sensing techniques
- SSTfnd: temperature free of diurnal temperature variability



#### Radiómetros 1.4GHz

| 2009   2010   2011   2012   2013   2014   2015   2016   2017   2018   2019   2020   2021   2022   2023   2024   2025   2026 |
|-----------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------|



#### **SMOS**

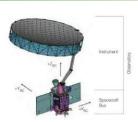


#### **Aquarius**



#### **SMOS**

Interferometric Radiometer Spatial res: ~43 km (30-80 km) Swath: ~1000 km Global coverage: ~2-3 days Incidence: 0°- 60° Full polarization Launched Nov 2009




#### Aquarius-SAC/D

Radiometer & scatterometer Spatial Res: ~100 km Swath: ~400 km Global coverage: ~7 days Incidence angle: 29°,38° & 46° Full Polarization Launched Jun 2011



#### **SMAP**



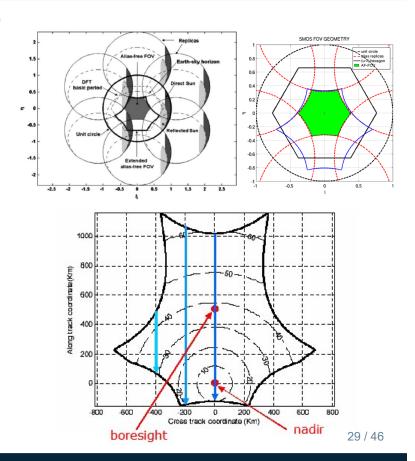


#### **WCOM**

COSM

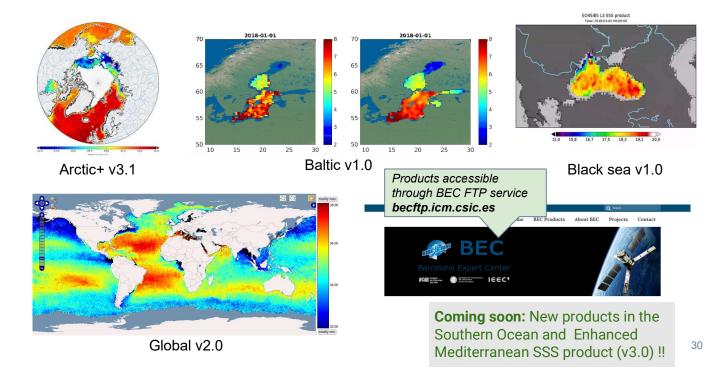


**CIMR** 


#### **SMAP**

Radiometer & SAR
Spatial res: 40 km
Swath: 1000km
Global coverage: ~2-3 days
Incidence angle: 40°
Full Polarization
Launched Jan 2015



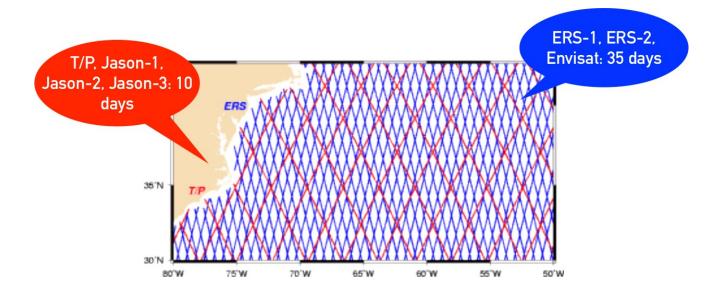

**Soil Moisture and Ocean Salinity (SMOS)** 







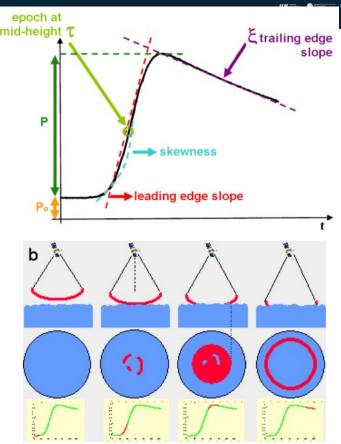
#### **BEC SMOS SSS Products**



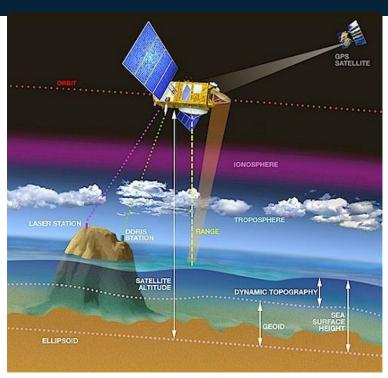



| Sensor                                                                | Platform                                      | Agency                         | Dates                                      | Frequencies                             | Polarization                          | Products                                                           |
|-----------------------------------------------------------------------|-----------------------------------------------|--------------------------------|--------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------------------------------------|
| SSM/I (Special<br>Sensor Microwave<br>Imager)                         | DMSP: F8, F10,<br>F11, F13, F14,<br>F15       | U.S. Dept. of<br>Defense (DoD) | Sep 1987 present                           | 19.35 22.235 37.0<br>85.5               | V, H; V; V, H; V, H                   | Wind speed Water<br>vapor Cloud water<br>Rain rate Sea ice         |
| TMI (TRMM<br>Microwave Imager)                                        | TRMM                                          | NASA/JAXA                      | Nov 1997- 2015                             | 10.7 19.4 21.3<br>37.0 85.5             | V, H; V, H; H; V,<br>H; V, H          | SST<br>Wind speed Water<br>vapor Cloud liquid                      |
| AMSR-E AMSR-2 (Advanced Microwave Scanning Radiometer)                | Aqua<br>GCOM-W1<br>(Shizuku)                  | JAXA/ NASA<br>JAXA             | May 2002- Oct<br>2011<br>May 2012- present | 6.925 10.65 18.7<br>23.8 36.5 89.0      | V, H; V, H; V, H; V,<br>H; V, H; V, H | SST<br>Wind speed<br>Atmospheric                                   |
| WindSat                                                               | Coriolis                                      | U.S. DoD                       | Jan 2003- present                          | 6.8 10.7 18.7 23.8<br>37.0              | V, H; FP; FP; V, H;<br>FP             | SST, wind speed and direction                                      |
| MIRAS (Microwave<br>Imaging<br>Radiometer with<br>Aperture Synthesis) | SMOS (Soil<br>Moisture and<br>Ocean Salinity) | ESA                            | Jan 2009- present                          | 1.4                                     | V, H                                  | SSS                                                                |
| Aquarius                                                              | SAC-D (Soil<br>Moisture Active<br>Passive)    | CONAE/NASA                     | Jan 2011- 2015                             | 1.41                                    | V, H, U                               | SSS                                                                |
| GMI Microwave<br>Imager                                               | GMI (Global<br>Precipitation<br>Measurement)  | NASA                           | Feb 2014 - present                         | 10.65, 18,7, 23,8,<br>36.5, 89.0, 165.5 | V,H; V,H; V; V,H;,<br>V,H; V,H;       | SST, Wind speed<br>Water vapor Cloud<br>water Rain rate<br>Sea ice |
| Radiometer                                                            | SMAP (Soil<br>Moisture Active                 | NASA                           | Jan 2015- present                          | 1.41                                    | V, H, U                               | SSS                                                                |




- Altimeters are nadir-looking radars that measure travel time and backscatter providing measures of sea level and sea state
- Measurements are constrained to satellite tracks




BEC

Barcelona Expert Center

- Echo waveform has a characteristic shape that can be described analytically (the Brown model).
  - ο τ epoch at mid-height: range
  - P the amplitude of the useful signal: backscatter coefficient  $\sigma_0$
  - o P<sub>0</sub> thermal noise
  - o leading edge slope: SWH
  - o skewness: the leading edge curvature
  - trailing edge slope: deviation from nadir of the radar pointing







Sea Surface Height (SSH)

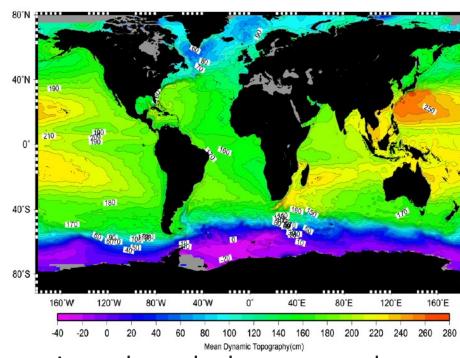
$$h_{raw} = h_{sat} - R$$

Measured SSH has several contributions

$$h_{raw} = \eta + G + h_{tide} + h_{atm}$$

Need to apply oceanic corrections (h<sub>tide</sub>, h<sub>atm</sub>)

Dynamic topography η is related to currents but geoid undulations are not well known

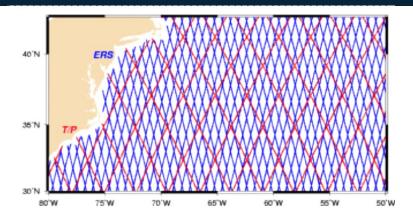


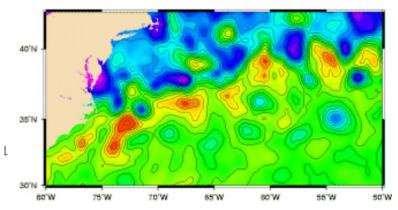

 Geoid undulations are constant in time: Sea Level Anomalies

$$\eta' = h - \langle h \rangle$$

Mean Dynamic Topography
 (MDT) determined from altimetry, gravimetric data and in situ measurements

$$\eta \approx h - \langle h \rangle + \eta_{MDT}$$





CMDT RIO05

 Measurements are taken along altimetric tracks: only the cross-track velocity can be derived



- Two-dimensional fields are obtained through optical interpolation in space and time
- Basic configuration: 2 altimeters
- Shortest wavelengths ~150 km
- Error in velocities 20%-30% of variance
- Near-Real Time: past data only







| Altimeter & Platform        | Agency                      | Dates              | Height   | Orbit                                   | SSHA r.m.s. accuracy |
|-----------------------------|-----------------------------|--------------------|----------|-----------------------------------------|----------------------|
| TOPEX/Poseidon              | NASA/CNES                   | 1992-2005          | 1 336km  | 9.92 day repeat non-<br>Sun-synchronous | 2-3 cm               |
| Poseidon-2 on Jason-1       | NASA/CNES                   | 2001-present       | 1 336km  | 9.92 day repeat non-<br>Sun-synchronous | 2 cm                 |
| Poseidon-3 on Jason-2       | NOAA/ NASA/CNES<br>Eumetsat | June 2008- present | 1 336km  | 9.92 day repeat non-<br>Sun-synchronous | 2 cm                 |
| Poseidon-3B on<br>Jason-3   | NOAA/ NASA/CNES<br>Eumetsat | Jan 2016- present  | 1 336km  | 9.92 day repeat non-<br>Sun-synchronous | 2 cm                 |
| Radar altimeter on<br>ERS-1 | ESA                         | 1991-2000          | 780km    | 3 & 35 day repeat<br>Sun-               | 5-6 cm               |
| RA on ERS-2                 | ESA                         | 1995-2003          | 780km    | 35 day repeat Sun-<br>synchronous       | 5-6 cm               |
| RA2 on Envisat              | ESA                         | 2002-2012          | 800 km   | 35 day repeat Sun-<br>synchronous       | 3 cm                 |
| Geosat                      | U.S. Navy                   | 1986-1989          | 800km    | 17.05 day repeat Sunsynchronous         | 10 cm reanalysis     |
| Geosat Follow-on            | U.S. Navy                   | 2000-2008          | 880km    | 17.05 day repeat Sunsynchronous         | 10 cm                |
| SIRAL<br>on Cryosat-2       | ESA                         | 2010-present       | 717 km   | 30 day repeat non<br>Sun-synchronous    |                      |
| Sentinel-3A                 | ESA                         | Jan 2016-present   | 814.5 km | 27 day repeat non<br>Sun-synchronous    | 3 cm                 |
| AltiKa on SARAL             | ISRO/CNES                   | Feb 2013 -         | 800 km   | 35 day repeat non<br>Sun-synchronous    |                      |
| HY-2                        | CAST                        | Aug 2011 -         | 971 km   | 14 days / 168 days                      |                      |

# **COPERNICUS PROGRAM**



The SENTINEL-3 mission is jointly operated by ESA and EUMETSAT to deliver operational

ocean and land observation services.

The spacecraft carries four main instruments

OLCI: Ocean and Land Colour Instrumen

SLSTR: Sea and Land Surface Temperatu

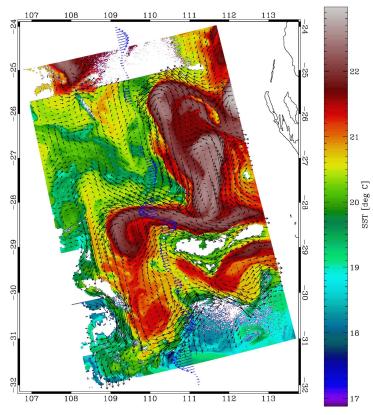
SRAL: SAR Radar Altimeter

MWR: Microwave Radiometer.



# **Sentinel 3: SST/SSH synergy**




- Simultaneous observations of SST and SSH can be ocean surface current fields
- The reconstruction of surface currents from SST c function (TF)

 $\hat{\psi}_s(\vec{k}) = F_T(\vec{k}) e^{-i\Delta\theta(\vec{k})} \hat{T}_s(\vec{k})$  The 1F can be derived from fluid dynamics theory

$$\Delta\theta(\vec{k}) = 0$$
  $F_T(\vec{k}) \propto k^{-1}$ 

- Our approach: to exploit the synergy between SST
  - the amplitude of SSH
  - the phase of SST

$$F_T(k) \approx \frac{g}{f_0} \frac{\langle |\hat{\eta}| \rangle_k}{\langle |\hat{T}_s| \rangle_k}$$



# **Sentinel 3: SST/SSH synergy**



26 Apr 10 28 Apr 10 30 Apr 10 02 May 10 04 May 10 06 May 10 08 May 10 10 May 10 12 May 10 14 May 10 16 May 10

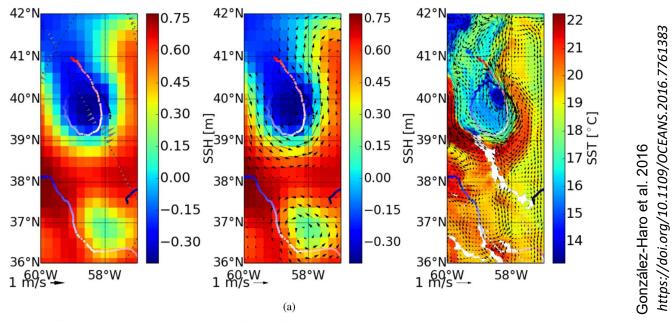
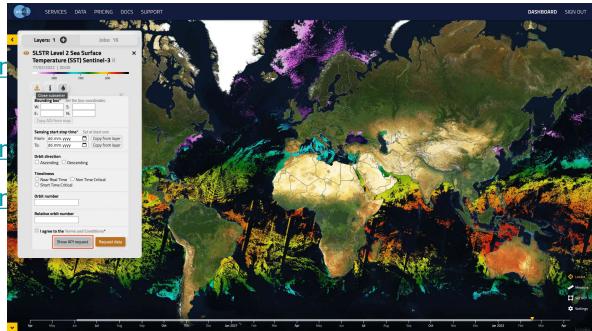



Fig. 3. left: Map of SSH gridded product corresponding on 6 May 2010 and normal component of the geostrophic velocity retrieved from all the available tracks of absolute dynamic topography (ADT), within a temporal window of 6 days centred on 6 May 2010. Middle: Map of SSH gridded product and the geostrophic velocity field retrieved. Right: Map of MODIS SST and the velocity field retrieved from it using the characterized transfer function. The horizontal color bar is common to all figures and indicates the date of the drifting buoys present in the region, which are over-plotted in every figure. It is centred on the date of SST image the 6 May 2010, blue indicates an earlier date and red later.

# Sentinel 3: accessing and visualizing



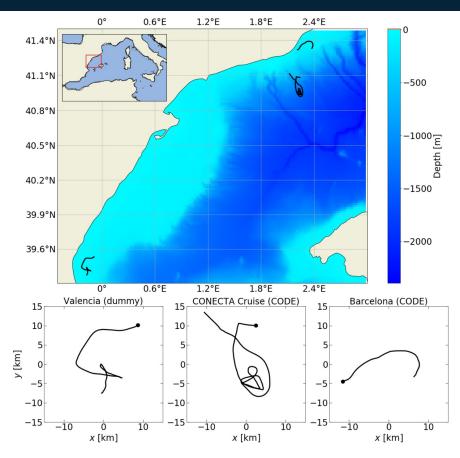

Practical training material:

https://gitlab.eumetsat.int/eunsaf-sst

https://gitlab.eumetsat.int/eur

https://gitlab.eumetsat.int/eur case-studies/-/tree/main/




# **Applications: Search and Rescue**

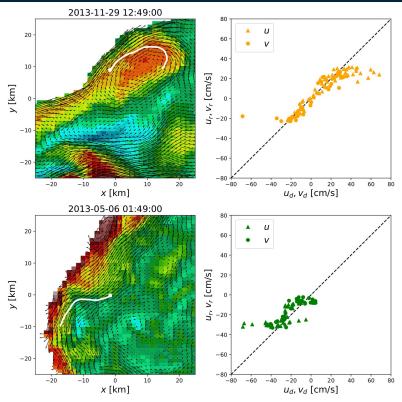




**Figure 3.** Image of 2 June 2015 showing the dummy with the GPS transmitter (black and orange cylinder) attached to its neck used in the Valencia experiment. Copyright SASEMAR with permission.

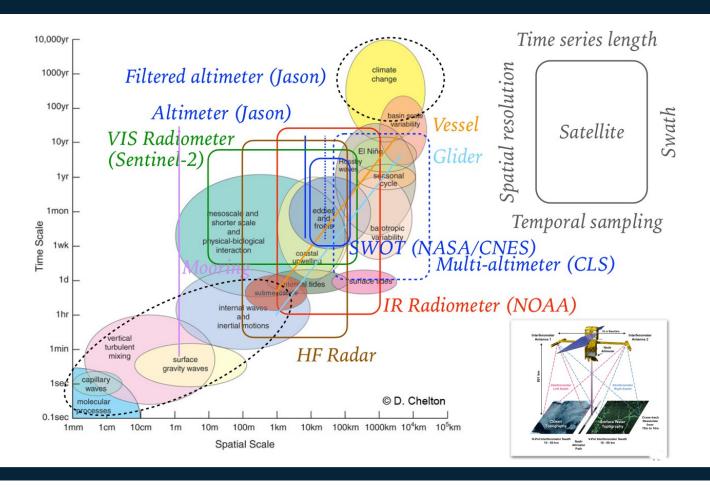
Isern-Fontanet, J., et al. (2021). High-resolution ocean currents from sea surface temperature observations: the Catalan sea (western mediterranean). Remote Sensing, 13(18), 3635.




# **Applications: Search and Rescue**



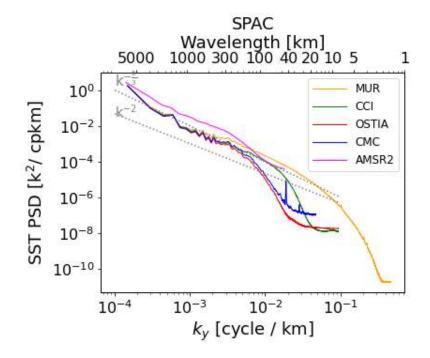


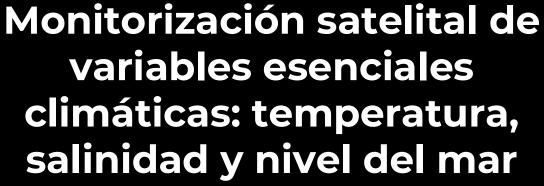

**Figure 3.** Image of 2 June 2015 showing the dummy with the GPS transmitter (black and orange cylinder) attached to its neck used in the Valencia experiment. Copyright SASEMAR with permission.

Isern-Fontanet, J., et al. (2021). High-resolution ocean currents from sea surface temperature observations: the Catalan sea (western mediterranean). Remote Sensing, 13(18), 3635.



**Figure 6.** (**Left**) BT of coastal coherent structures with the reconstructed velocity field. White line indicated the trajectory of the drifter used for the scatter plot of the second line and the metrics shown in Table 1. (**Right**) Scatter plot between velocities derived from drifters and those obtained from the BT images. White areas correspond mainly to land areas.






### Difference between size of the grid and effective spatial resolution

 The effective spatial resolution can be estimated as the spatial scale where the Power Spectrum departs from the expected power-law behaviour.





Cristina González Haro

Institut de Ciències del Mar (ICM) - Barcelona Expert Center (BEC)

Consejo Superior Investigaciones Científicas (CSIC)

□ cgharo@icm.csic.es

Copernicus Satellite Data in Chile and Latin America: From applications to networking



22nd March, Valparaíso, Chile

