
Sentinel-1 observation for shoreline delineation applied to Mexico's Coast

Alejandra A. López-Caloca, Alejandro Monsiváis-Huertero & Jubal López-Amaya Jorge Paredes Tavares

Introduction

- The natural shoreline is a dynamic environment and it is subject to constant weather variability.
- There is a need to monitor of coastal ecosystems for the conservation of coastal vegetation, water and landform (Ward et al. 2020).
- Fragility of coastal ecosystems (erosion, accretion).
 - Sea level changes due to climate change.
 - Seasonal variations.
 - Hurricanes.
 - Tsunamis.

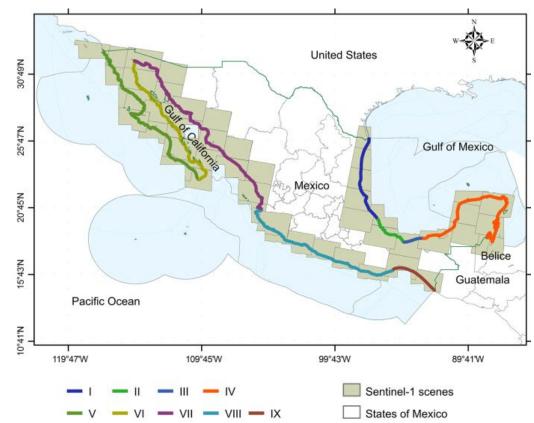
Introduction

- At a country or continental scale, only a few datasets have been developed.
 - Landsat data (Sayre et al. 2019; Bishop-Taylor et al. 2021).
 - Sentinel-2 (Bergsma and Almar 2020).
 - Mainly over an annual time period.
 - Shoreline layer of Mexican Republic (2011-2014) (CONABIO, 2018).
 - SPOT images, covering the 66% of the Mexican coastline (Valderrama-Landeros et. al., 2019).
- In many zones of the Mexican coast, clouds coverage limits the monitoring using optical satellite images.
- Clouds are transparent to SAR, do not affect shoreline extraction.

Aim and scope

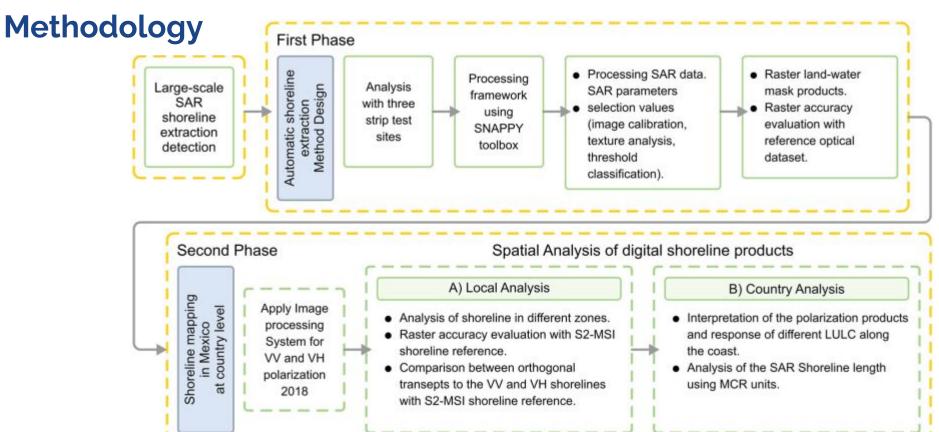
 Develop a shoreline extraction method to delineate the ocean-land interface through the use of Sentinel-1 data for monitoring the coastline in Mexico.

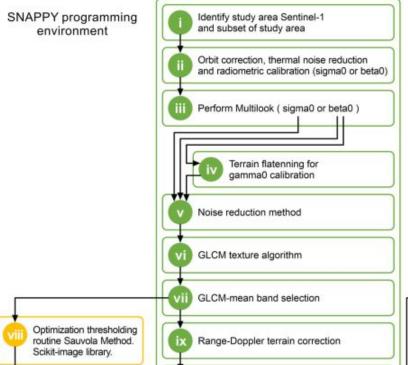
 Design an automated process using GLCM-mean texture information to increase improvements in image binarization by Sauvola thresholding.

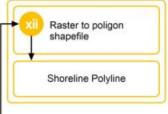


Mexican Shoreline

- Over 9 300 km of coastline.
- Different ecosystems and geoforms.
- Geographic variables such as latitude, geological evolution, climate.





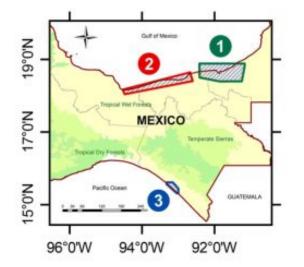

Global thresholding applied to GLCM-mean

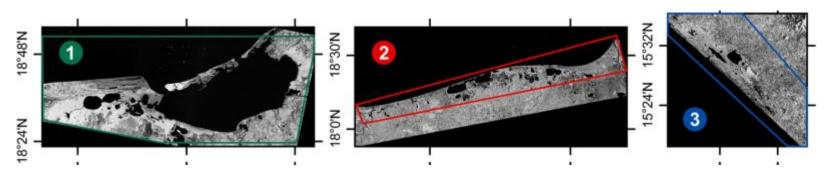
for water detection binarization

Final binary water mask with terrain correction*

Workflow

- iii) Multilook
- iv) Small model decreases geometric distortion
- v) 7x7 window damping factor=2
- vi) window 9x9 128 bin.
- viii) Non-water = 0, water = 1.
- ix) SRTM-1. Reproject slant range to map space (10 m).
- x) Sauvola threshold.
- xi) Export to tif format.
- xii)Map shoreline generation





- Strip_2
- Strip_3

Location of three strip test sites

- High resolution images (SPOT).
- SPOT, Sentinel-1 & Sentinel-2: max 4 days of difference.
- Sea level monitoring stations.

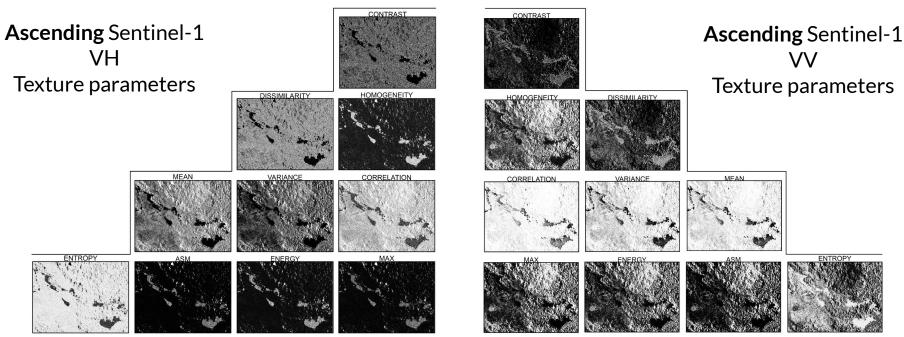
Texture calculation

GLCM-mean is used to reduce noise.

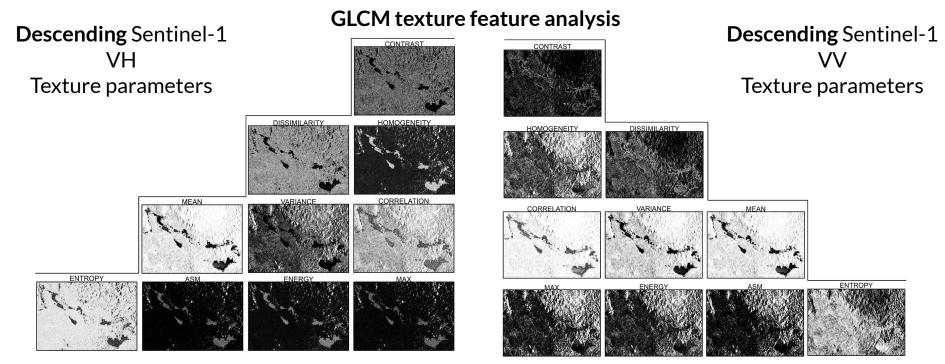
The pixel value is weighed by its frequency of appearance, combined with a determined neighboring pixel value.

$$\mu_D = \sum_{i,j=0}^{N-1} D(P_{i,j})$$

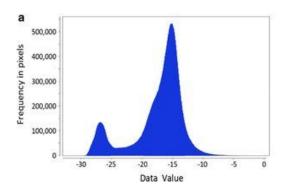
where μ is the mean, Pi,j is the probability of values i and j occurring in adjacent pixels within the window defining the neighborhood. D (directional) is i or j (columns and rows).



GLCM texture feature analysis


Texture describers help to better outline water bodies since they are good estimators in the identification of edge contrasts among classes.

Source: AA López-Caloca, B Escalante-Ramírez, P Henao, Journal of Applied Remote Sensing 14 (3), 036503-036503



Shoreline classification algorithms

Background - Land class. Water - Object.

Bimodal distribution.

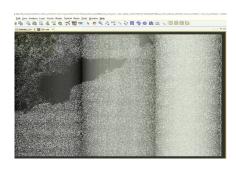
Jing-Bo Xue, et al., 2021.

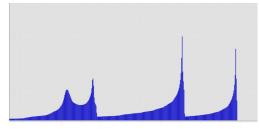
Sauvola Method

the threshold $T_{sauv}(x,y)$ is determined by means of the average and the standard deviation of the pixel values in backscatter coefficients at location (x,y) within a neighborhood defined by a window of size (w x w).

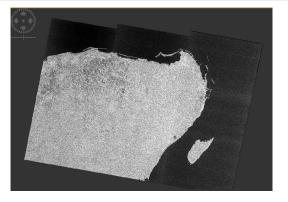
$$T_{sauv}(x,y) = m(x,y) \cdot \left[1 + k\left(\frac{s(x,y)}{R} - 1\right)\right]$$

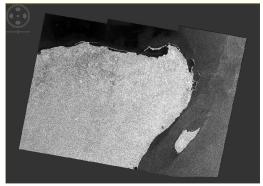
m(x,y): arithmetic mean s(x,y): standard deviation R: max SD of a backscattering coefficient k: thresholding parameter [0.2, 0.5]




Polarization an thermal noise

VH sensibility by thermal noise.


Cross polarization channels are significantly perturbed by thermal noise due to wicker power.



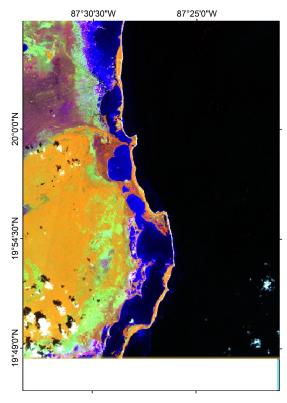
2018-03-03

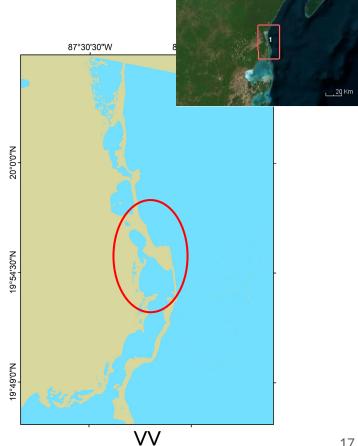
Sentinel-1A VV polarization

Results

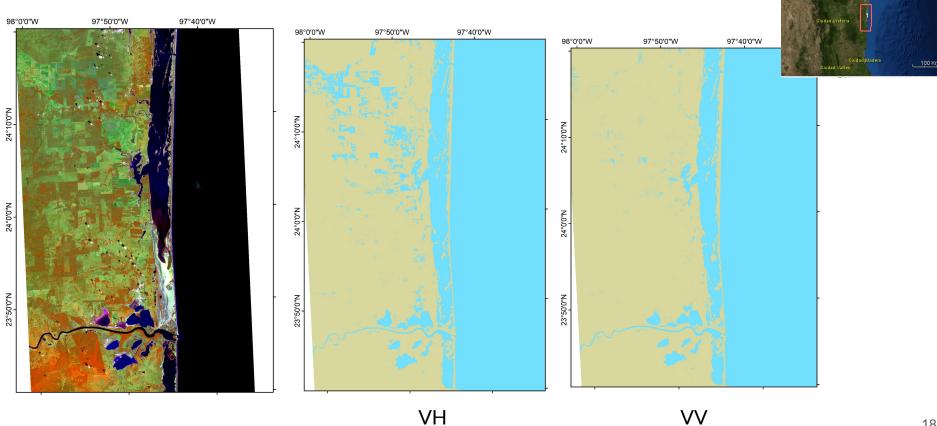
Comparison with S2-MSI and Sentinel-1 shoreline binary mask

Land-water visual evaluation

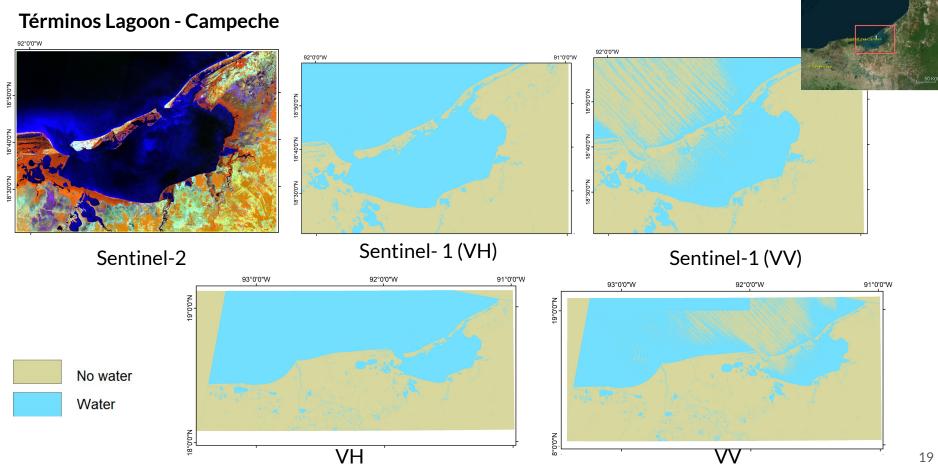


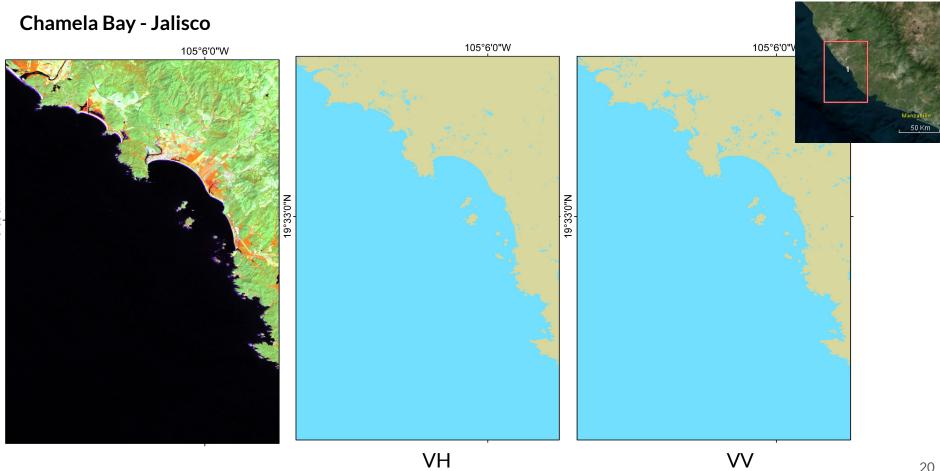


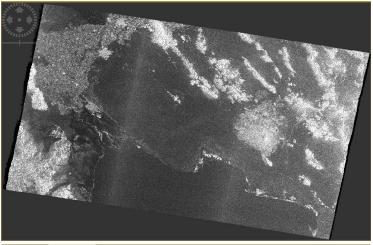
Sian Ka'an Biosphere Reserve - Quintana Roo



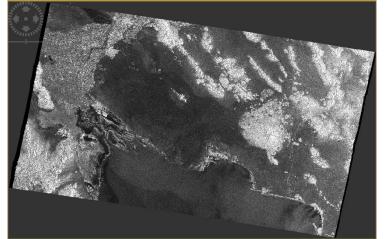
La Pesca - Tamaulipas







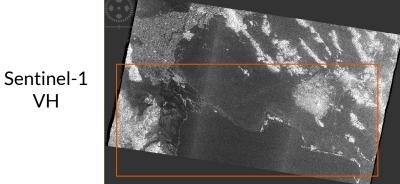
Gran Desierto de Altar - Sonora

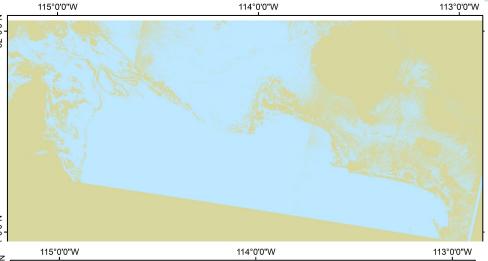


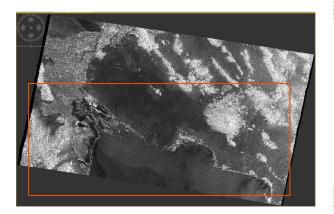
Sentinel-1 VH

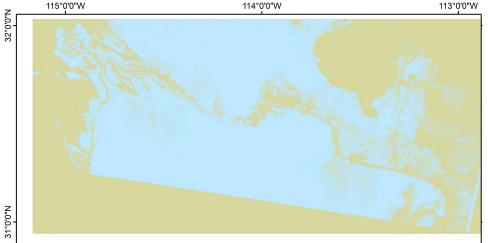
Sentinel-1 VV

Sentinel-2 MSI Natural Color B4, B3, B2



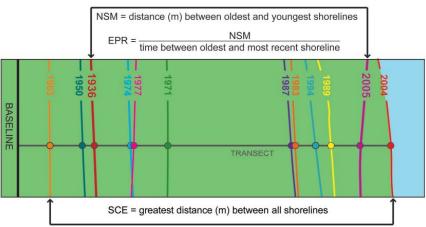


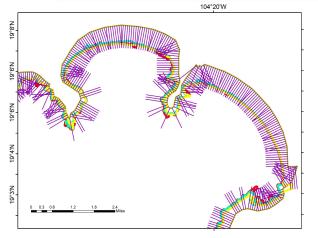

Gran Desierto de Altar - Sonora

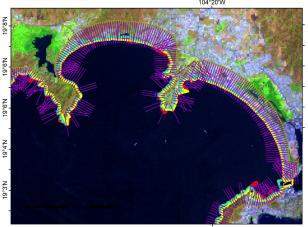


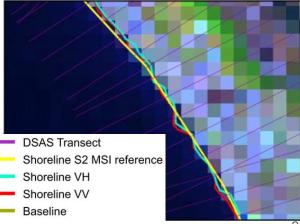
N.0.0.

Sentinel-1 VV









Himmelstoss, et al. (2018)

- Compute Digital Shoreline Analysis System (DSAS)
- Transects: Spacing=100m, length 500 m
- Comparison shoreline extraction of Sentinel-1 vs
 Sentinel-2

Analysis of the SAR shoreline using MCR

Polarization	Site A Isla Ángel de la Guarda, in the Gulf of California		Site B EL Vizcaíno Biosphere Reserve, in Baja California		Site C Chamela Bay, in Jalisco		Site D Manzanillo Bay and Santiago Bay, in Colima		Site E The port of La Pesca, in Tamaulipas		Site F Los Petenes Biosphere Reserve, in Campeche	
	VV	VH	VV	VH	VV	VH	VV	VH	VV	VH	VV	VH
Reference Land-water mask Overall Acc. (%)	S2A-MSI 0.99	S2A-MSI 0.99	S2B-MSI 0.90	S2B-MSI 0.91	S2B-MSI 0.94	S2A-MSI 0.97	S2B-MSI 0.97	S2B-MSI 1.0	S2A-MSI 0.95	S2A-MSI 0.96	S2A-MSI 0.98	S2A-MSI 1.0
DSAS SCE mean (m)	46.53	39.21	59.29	86.42	71.43	67.20	127.65	103.33	38.04	39.49	50.94	43.25
DSAS RMSE mean	1.15	0.97	1.18	1.73	2.18	2.05	4.04	3.27	1.14	1.18	1.43	1.22
DSAS Bias	0.03	0.02	0.02	0.03	0.07	0.06	0.13	0.10	0.03	0.04	0.04	0.03
DSAS Total number of transects	1623		2510		1077		998		1115		1260	
DSAS Baseline length (m)	162,208.80		250,912.89		107,649.67		100,700.84		111,413.08		125,975.03	

Conclusions

- Under the studied conditions, it is possible to distinguish water/non-water areas which were successfully extracted.
- Frequent monitoring of the coastline is possible using Sentinel-1 over time.
- Digital shoreline map and database serve as a reference to the coastal manager.

Future work

 Identify the changes in the Mexican coast over time to support the territory management plans.

 Delineate water/non-water in coastal desert zones, where backscattering of sand affects the classification process.

References

Bergsma E, Almar W. 2020. Coastal coverage of ESA' Sentinel 2 mission. Adv Space Res. 65(11): 2636–2644.

Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., & Farris, A. S. (2018). Digital shoreline analysis system (DSAS) version 5.0 user guide (No. 2018-1179). US Geological Survey.

Sayre R, Noble S, Hamann S, Smith R, Wright D, Breyer S, Butler K, Van Graafeiland K, Frye C, Karagulle D, et al. 2019. A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units. J Oper Oceanogr. 12(sup2):S47–S56.

Valderrama-Landeros L, Martell-Dubois R, Ressl R, Silva-Casarın R, Cruz-Ramırez C, Muñoz-Perez J. 2019. Dynamics of coastline changes in Mexico. J Geogr Sci. 29(10):1637–1654.

Ward ND, Megonigal JP, Bond-Lamberty B, Bailey VL, Butman D, Canuel EA, Diefenderfer H, Ganju NK, Go-ni MA, Graham EB, et al. 2020. Representing the function and sensitivity of coastal interfaces in Earth system models. Nat Commun. 11(1):1–14.

Thank you!

alopez@centrogeo.edu.mx

<u>iparedes@centrogeo.edu.mx</u>

https://www.tandfonline.com/doi/full/10.1080/10106049.2022.2109760

Centro de Investigación en Ciencias de Información Geoespacial